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Abstract. A one-dimensional model is used to study the tiltlno-tilt transition in the liquid 
condensed phase of a lipid monolayer at the airlwater interface. The head groups are 
modelled by hard rods o f  length b and the alkane chains by rigid tails o f  length a ( a  n b). 
The interaction between these model lipid molecules is purely repulsive with a soft, shon 
range, repulsion allowed between the tilting tails. The model is aimed at highlighting the 
excluded volume role in the tilt/no-tilt transition. The model is solved analytically and, in 
the limit ofthe temperature T-0, the equation of state exhibits-at most-three distinct 
phases; isotropic, 'tilting' and 'non-tilting'. At finite temperatures the tranSition from one 
phase to the other is continuous but, at law temperatures. still sharp. 

1. Introduction 

Lipid molecules exhibit surfzce-active properties due to their amphiphilic character. 
The molecules possess a polar head group which is hydrophilic and an alkane chain 
tail that is hydrophobic and-if insoluble in water-usually form a monomolecular 
film when spread on a water surface, resulting in a quasi-bidimensional behaviour. 
Henceforth we shall be concerned with lipid monolayer formed at an air/water 
interface. 

Extensive experimental studies of lipid monolayers (Gaines 1966, Gershfeld 1976, 
Helm er a1 1987 and Knobler 1989) point to a rich phase behaviour. But broadly 
speaking the phase diagram shows phases which-with decreasing surface area per 
chain and increasing lateral pressure-are termed 'gaseous', 'liquid-expanded' (LE), 
and 'liquid-condensed' (LC) phases. A considerable effort has been devoted to develop 
a theoretical understanding of the LE-LC transition and related problems (Wiegel and 
Kox 1980), but there is still controversy in the interpretation and even the existence 
of this transition (Middleton and Pethica 1981, Middltion er al 1984). 

In  the LC phase the direction of the chains is either perpendicular to the surface 
or tilted. Albrecht er a1 (1978) have established that, at least for some substances, a 
phase transition takes place between these two states, the so-called tilt/no-tilt transition. 

Safran et a1 (1986), Carlsson and Sethna (1987), and b e e r  et a/ (1990) have 
recently developed theoretical models to study the tilt/no-tilt transition using, in 

where each of the lattice sites is occupied by the head groups of the lipid molecules, 
while the alkane chain is treated as a rigid tail with only one orientational degree of 
freedom. Assuming nearest neighbour interactions between the alkane chains, the 
phase behaviour is studied as a function of the orientations of the chains. In spite of 
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its clear limitations, the statistical mechanics of the one-dimensional model exhibits a 
rich non-trivial phase behaviour that can be tested by computer simulation. 

The simulation methods can easily handle two-dimensional case generalizations of 
this type of model. 

In this work we also use a one-dimensional model. However, we take into account 
the translational degrees of freedom by using an off-lattice model, thus removing the 
on-lattice restrictions. We specifically propose a one-dimensional model for N lipid 
molecules, whose head groups are represented by hard rods of length b, that lie on 
the line segment [0, L], to which a rigid tail of length a is attached at the rod centre 
of mass. We shall assume a >> b. This assumption precludes the study of the interplay 
between the two length scales a and b in determining the phase behaviour. The tails 
have one orientational degree of freedom, quantified by the local tilt angle 0,. This is 
the angle formed by the ith rigid tail with the normal to the centre of mass of the ith 

A purely repulsive interaction potential between the rigid tails is assumed to act 
between nearest neighbours which is characterized by an orientational dependence of 
its strength and range parameters. We further assume that the potential has a soft 
short-range part that depends on the relative angles of tilt between two adjacent tails. 
Such a model highlights the crucial role played by the excluded volume in driving the 
phase transitions. 

We shall show that the assumption of small angles of tilt, and a suitable choice 
for the soft potential between the tails, yields analytic solutions which exhibit-at 
most-three distinct phases in the limit as the temperature T+ 0. At finite temperatures 
the transitions between the phases is continuous. At low temperatures the different 
phases are still well defined, but the distinctions become increasingly blurred as the 
temperature is raised. 

We shall be concerned here only with those aspects of the model which can be 
studied from the analytic results. This limits the scope of this paper to the thermo- 
dynamic properties. We are leaving out the study of those properties which require 
extensive numerical calculations, such as the interplay between the two length scales 
a and b mentioned above, the pair correlation function, and collective excitations. 

Similar approaches to this work have been used to address somewhat different 
problems by Berne and Pechukas (1972) and Chen er al(1988). 

The outline of the paper is as follows. In section 2 we present the general solution 
for our model lipid monolayer, and show that it reduces to an eigenvalue problem. In 
section 3 we introduce the explicit form of the soft repulsion between the tails and 
work out explicitly the equation of state and composition of each phase. Finally in 
section 4 we sum up and discuss briefly our results. 

i d  h & d  ai x,. 

2. Theory 

We consider a system of N lipid molecules such that the head groups are modelled 
by hard rods of length b, which lie on a line segment [0, L], while the alkane chains 
are modelled by hard tails of length a ( a  >> b) attached at one end to the centre of 
mass of the rods as shown in figure 1. 

The potential energy of interaction V = V(x, ,  . . . , xN ; e,,. . . ,ON) is a function of 
the position x,, and angles 0, ( i  = 1 , .  . . , N) of the molecules. We shall assume that 
the angles of tilt are small, with a maximum inclination [&,I. 
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Figure I. Tilting configurations of the model alkane chains: (a) 0<4, <4,/2 or +J2< 
( b )  6,/2<4,; + i + , c 4 m o r O < B j ;  +,*1<+m12; (c) 4m/2<+j<4,0ro< 

4,+, < +& 
In the canonical ensemble the partition function reads 

L 0," 0." 
QN(L, p )  = A-N lo . . . loL dx, . . . dxN I-,... . . . de , .  . . daN exP(-pv) ( 2 . 1 )  

where A =  l 1 ~ / ( 2 r p m I ) ' ' ~ ;  p-' is the product of the temperature T and the Boltzmann 
constant k., m is the mass of the molecules, and I their moment of inertia. The 
assumption of painvise additive nearest-neighbour interactions means that the 
Boltzmann factor may be written as 

N-l 

expl-pV)= n expl-pv(x,, xj+,; &, e,+,)}. (2 .2 )  

We define the direction of positive rotation to be countetclockwise. It is convenient 
to make the following change of variables for the angles of tilt, from (ei) to {A] ,  such 
that +i = 0 when B j  = -e,, 4, = & / 2  when Bj = 0 and @! = 4,,, when 0, = 0,. Moreover, 
with reference to figure 1, the distance of closest approach between two head groups 
depends not only on their length b, but also on the relative angle of tilt between the 
adjacent taiis. .These changes in the distance of closest approach wiii be characterized 
by a parameter p. In figure 1 we have plotted the possible arrangements of the adjacent 
tails; these result in the distances of closest approach quantified by equation (2.4) below. 

; = I  

We assume that 
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is given by the interaction potential between adjacent tails U ( x ,  -xi+, - b(& bit,); 
q5{, q5j+l) for distances larger than contact. The specific choice of U used in this work 
is given by equation (3.1). 

We can integrate over most of the translational degrees of freedom-excluding 
those arising from any two adjacent head groups-by transforming from the canonical 
to the isothermal-isobaric ensemble. Since these are related by a Laplace transform, 
and given the assumption of nearest-neighbour interaction, the convolution theorem 
takes care of the translational variables. The calculations are more conveniently carried 
out by the following change in the translational variables, 

N N + 1  

x, = 1, x, = 1, + f ,  x N =  1 fi  xN+,=L= f,. (2.5) 
i = ,  i = l  

Now, transforming from QN(L, p )  to the isothermal-isobaric partition function T(s,  p )  
via 

T(L, P )  = jm dL (L, p ) (2.6) 
0 

we obtain 
N - 1  

ANT(s,  P ) =  . d h . .  . d'#" n f(& $i, $++I)  (2.7) 
!=I 

where s = pp, with p denoting the one-dimensional lateral pressure, and 

f(s, bi, h+l)=exp{-sb(+i, h+J} d f  e-" exp{-pU(f, &, h+&. (2.8) 

$N+,), equation (2.7) can be evaluated 
on taking the trace of the Nth iterate of the symmetric kernel f(s, q$, 4i+,). Then, we 
rewrite equation (2.7) as 

Id' 
Using the cyclic boundary conditions (6, 

ANT(s,  p )  = dhf" ' (s ,  h, htl). (2.9) 

The thermodynamic properties follow from equation (2.9) by evaluating the excess 
Gibbs free energy per particle g(s, p) ,  the characteristic thermodynamic function for 
this ensemble, by taking the limit of trace as N + 00, we have 

-Pg(s, P )  =In Amax (2.10) 

/o'md41f(s, h. + 2 ) W n ( ~ l ) = A n Y n ( h ) .  (2.ii) 

where Amax is the maximal eigenvalue of the Fredholm integral equation 

To obtain Amax we have to specify U ( f ,  & &+J. The particular choice we make has 
the distinct advantage of yielding an analytic solution. 

3. Results 

We assume U ( f ,  cfJj, +j+l)  to be repulsive and short-ranged, and that it is possible to 
partition the contribution of the position and tilting coordinates as follows 



f i b  

Figure 2. Strength of the soft, short-range, repulsive potential U(l, 4?, &) for different 
configurations of two neighbouring tails. f is the relative distance between the centres of 
mass of the corresponding adjacent head groups: ((I) O <  4, < #,I2 or 4,/2< 4,+, ~ 4 . ;  
( b )  4&<&; h+, < 4m or 0 ~ 6 ;  4,+, < (e) 4,/2<h< $, or O < h + ,  < 4 4 .  

In order to evaluate A,,,, it is sufficient to note that now, with U(t, c${, &+,)given 
by equations (3.1) and (3.2). equation (2.9) reduces to the matrix equation 

(3.3) 

with 

and 

(3.5) 

Hence 

(3.6) 
+ 112 

Amax = (b/2) e-2ppb{(F:, + F12) +[(F:, - F12)2+4F12] ) 
with 

F ;  = (e28pb/b)F;,. (3.7) 

We now introduce reduced variables with lengths scaled to b, the length of the head 
groups, and energies scaled to U ] ,  which characterizes the strength of the soft repulsive 
potential between two neighbouring tails. Thus, we define: 1'= ljb, A* = A,.,/b, p* = 
pul, A T = A l / u , ,  A f = A 2 / u ,  and p*=p*pb/u , .  
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In reduced units, the length per molecule is given by 

I* =Z-(dA"/dp*)/A* 

and in the limit p+m(T+O)p*, 1-A: and 1-A,* diverge. 
Thus, using equation (3.8), we obtain 

P * > ( A ~ - A : ) / P  
I * =  l + p  (1 - A ~ ) / ( l - p ) < P * < ( A , * - A ~ ) / P  (3.9) i: 0 < p *  < (1 -A,*)/ ( l  - p )  

and the equation of state reads 
I* > 2 

P * =  ( l - A , * ) / ( l - p )  l + p <  1*<2 (3.10) I:, (\-z * - - , , , p  A *, , .. ! <!* <!+i; . .  

The equation of state given above exhibits three distinct phases provided the 

(1  -A,*)/(l  - P ) <  (A?-A?)/P (3.11) 

is satisfied, otherwise only two distinct phases are present. At T=O these phases are 
separated by first-order phase transitions; there are no critical points in the phase 
diagram which is to he expected as we have not included attractive forces in the 
potential of interaction between the lipid molecules. 

In going from the lower to higher lateral pressures the following phases are present. 
At p* = 0 we have an 'isotropic' phase in which the tails are randomly tilted. At 
p * =  (1 -Af) / ( l  - p )  the system changes to a more ordered phase in which the neigh- 
bouring iaiis are tiiied reiaiive io one another. Finaiiy, ai p* = (Af - A T ) / p  the system 
changes to an even more ordered phase in which neighbouring tails are not tilted 
relative to one another, hut may he tilted relative to the head groups. 

At finite, albeit low, temperatures these three phases are still present hut the 
transition from one phase to another is continuous with the coexistence regions- 
assuming they can he uniquely defined-exhibiting slopes. 

These features are shown in figure 3, where we show the phase behaviour of the 
system for the inverse temperature p* = 120 to which we superpose the T = 0 behaviour. 

In order to study the composition of these phases, let us assume that the angles of 
tilt are restricted to the intervals (0, E&,,,) and 4,,,), with O < E < & .  Under 
this assumption F,, , F I 2 ,  F22, given by equations (3.4) and (3.5), should be multiplied 
by the factors E, E ( ~ - E ) " ~  and (1 - E )  respectively. But, there is no change in the 
equation of state (3.10). 

Let us define c as the fraction of tails whose angle of tilting lie in the interval 

inequality 

(0, E + ~ ~ ~ ) .  namely 

(3.12) 

where H ( x )  is the Heaviside function. Actually c is the one-particle correlation function. 
Equation (3.12) may he related to the excess free energy, which we write as g(p, s, h )  

with h denoting a dummy external parameter. Differentiating g ( p ,  s, h )  with respect 
to h in the limit h + 0, we obtain 

(3.13) c = ( ( S i  - F22 + D ) S I  + 2FLl/{(FBi + F22+ D ) D )  
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Flpre 3. Reduced lateral pressure p* against reduced length per m o l e ~ l e  I* with A? = 0.6; 
A: =0.9 and p=OS at the reduced inverse temperature B * =  120 (full line). The dotted 
lines show the phase behaviour at 7 = 0 for the same parametrization. 

with 

D = { ( F , ,  -F2J2+4F12}"2. 

In the limit of ,3 +CO (T+O) equation (3.13) reads 
1*>2 

1 < I *  < 1 +@. 

c =  1 1+p< I* < 2 (3.14) [: 
Equation (3.14) shows the composition of the three phases discussed above. 

The isotropic phase composition depends on the actual value given to the parameter 
e. We recall that e was introduced in order to partition the ranges of the angles of tilt 
into two intervals in order to facilitate the study leading to equation (3.14). If e takes 
on a small value, say E = 0, then the tails may take on any value of angles of tilt from 
+ = O  to +-, or from @=-Om.. to Omax, and we expect short range correlations 
between the tails. 

In the second phase, which we call the 'tilted phase', half of the tails have an angle 
of tilt in the interval (0, E+,..), or (-e+max, 0). The other half of the tails have angles 
of tilt in the interval (e+, or (0, ee,..). It appears that the most likely configuration 
between two adjacenttails is one when one of the tails has an angle of tilt in the range 

0). while the other has an angle of tilt in the range (0, eO,..), and the system 
exhibits intermediate range order. A full picture will emerge an detailed numerical 
calculations of pair correlation functions-which are not trivial-are completed. 

Finally in the third phase, which we call the 'no tilted phase', all tails are tilted 
the same way, but not every tail has the same angle of tilt. More precisely, either all 

However, and unlike the on-lattice model where the heads have inbuilt translational 
symmetry, this arrangement does not result in a translational invariance of the tails. 
It is likely that within the present model these phase changes are more akin to those 
found in liquid crystals than to a liquid-solid transition. 

!pi!$ tTt tilted i" the rznge (-EOmax, 0) nr !hey are a!! !i!!ed in !he range (0, En,..). 
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However, we are at present unable to predict whether the system, depending on 
the choice of the parameter p. prefers to have angles of tilt in either of the (-&Omax, 0 )  
or (0, EO,.,) ranges or, indeed, the most likely configuration is around O = 0, and 
whether there is a value of p which takes the system from one type of configuration 
to the other. Again details on the nature of this phase have to await the calculation 
of the pair correlation functions. 

A similar argument may be carried forward to finite temperatures but, due to 
thermal fluctuations, it is no longer possible to be as precise as in the limiting case 
discussed above. 

4. Discussion 

In this work we have used a one-dimensional model to study the tilting transitions in 
lipid monolayers at the airlwater interface. While the one-dimensional character of 
the model is its greatest weakness, its ability to yield analytic results is its main strength. 
Moreover, our results exhibit some of the qualitative features found in experiment. 

In our model the interaction between the lipid molecules is assumed to be purely 
repulsive, highlighting the role played by these forces in driving the tilting transition. 
Furthermore equation of state (3.10) shows that the phases depend on the parameter 
p which scales the effective length of the head groups by taking into account the angles 
of tilt of the alkane chains. 

Acknowledgments 

We are grateful to J Mingins for introducing us to this field and for his constant interest 
in the work, and to G C Barker for many useful discussions and suggestions. The 
financial support of the AFRC is gratefully acknowledged. 

References 

Albreeht 0, Gruler H a n d  Sackmann E I978 3. Physique 39 301 
Berne B 1 and Pechukas P I972 J. Chem. Phys. 56 4213 
Carlsson J M and Sethna J P 1987 Phys. Rev. A 36 3359 
Chen Z Y, Talbot J ,  Gelbarl W M and Ben Shad  A 1988 Phys. Rev. Leu. 61 1376 
Gaines G L 1966 Insoluble Monolayers 0 1  Liquid-Gas Inreflaces (New York Wiley-lnlcrscience) 
Gershfeld N L 1976 Ann. Rev. Phys. Chem. 27 349 
Helm C A, MBhwald H, Kjaer K and Als-Nielsen J 1987 Biophys. 1. 52 381 
Knobler C M 1989 Ad". Chem. Phys. 77 397 
b e e r  M, Kremer K and Binder K 1990 1. Chem. Phys. 92 6195 
Middlelon S R a n d  Pethica B A 1981 Forodoy Symp. Chem. Soc. 16 109 
Middleton S R, lwahashi M, Pallas N R a n d  Pethica B A I984 Proc. R. Soc. A 396 143 
Safran S A, Robbins M 0 and Garoff S 1986 Phyr. Re". A 33 2186 
Wiegel F W and KOX A J 1980 Ado. Chem. Phys. 41 195 


